

U.S. Department of Energy

CHP Subcontractors Coordination Review Meeting

April 22, 2004 Oak Ridge National Laboratory's Washington D.C. Office

Name of Contract and Subcontractors

A Review Of Distributed
Generation Siting Procedures

Paul L. Lemar, Jr.
President
703-356-1300 x 204
pll@rdcnet.com

Description of Task(s)

Objectives

- Evaluate the distributed generation siting process, and identify ways to improve the processes that could result in reductions in cost and time
- Help developers understand siting and permitting costs and siting project duration

Approach

- Task 1. Collect baseline siting data
- Task 2. Perform siting trends analyses
- Task 3. Analyze siting procedures and make recommendations

Task 1: Collect Baseline Siting Data

- Developers are surprised during first few projects at how long it takes.
- Under expedited or simplified processes may be possible to reduce duration to 4 months.

Key Data Source: DG Project Developers or ISPs

- Integrated Solution
 Providers (ISPs) provide
 turnkey DG siting
 service: develop DG
 solution, select best
 technology, obtain
 permits, achieve
 interconnection, oversee
 installation.
- ISPs gain siting experience and learn how to navigate all DG siting processes, potentially reducing siting time and costs.

4444	Integrated Solution Provider	State	Business Products
	Constellation NewEnergy	CA	DG, fixed price electricity, energy tracking software
	Catalyst Power Partners	CA	Turnkey DG solutions
	RealEnergy	CA	DG and CHP
	AmerEsco	MA	DG and CHP
	NorEsco	MA	Turnkey DG and CHP
	DTE Energy Services	MI	Turnkey DG and CHP
	Coast Intelligen	NY	CHP for small to medium
	Celerity Energy	OR	size entities DG, energy networking software
0000000	Northern Power Systems	VT	Turnkey DG solutions

Task 2: Siting Since 2001 Has Been Slowing

Capacity of DG Installed by Year by Size

Sources: EIA 860, Current Industrial Reports, Diesel and Gas Turbine Worldwide, RDC.

DG Continues to Be Sited

Capacity Installed 2000-2003 by Technology and Size (MW)

Size Category	< 1 MW	1-5 MW	5-30 MW	30-60 MW	All Sizes	
Combined Cycle		5	20	40	60	
Combustion Turbine	70	70	3,990	1,560	5,690	
Fuel Cell	50				50	
Hydropower		4			4	
Reciprocating Engine	51,700	20,770	330	40	72,880	
Steam Turbine		30	70	50	150	
Total MW Capacity	51,860	20,880	4,410	1,680	78,820	

Sources: EIA 860, Current Industrial Reports, Diesel and Gas Turbine Worldwide, RDC.

Small Units Are Applied in a Wide Variety of Sectors

% Capacity Interconnected 2000-2003 Units > 1 MW

to grid

Sources: EIA 860, Diesel and Gas Turbine Worldwide.

% California Capacity Interconnected 2000-2003, Units < 1 MW

Residences, apartments, hospitals, government buildings, casinos, data centers, hotels, farms, churches, military bases, nurseries, health fitness clubs

Source: California Rule 21.

Over Three-Fifths in Just 4 States

Percent of Capacity Interconnected 2000-2003 by State, Units > 1 MW

Sources: EIA 860, Diesel and Gas Turbine Worldwide.

High Costs May be Inhibiting Interconnection

Percent of DG Capacity Interconnected over Time

Sources: EIA 860, Current Industrial Reports, Diesel and Gas Turbine Worldwide, RDC.

Siting Costs

- Siting costs add 8-50% or more to equipment cost. Cost varies by unit size, technology and specific location (not region).
- Site analysis and engineering is unique, is the most expensive track, and can cost millions for larger units.
- Permitting typically costs \$5,000 \$60,000. Largest cost can be air emissions control equipment. Expedited fees for small units can be as little as \$100.
- Interconnection typically costs \$20,000 \$30,000, but may reach \$300,000 plus \$10,000 in annual utility fees. Burdensome for smaller units.
- Anecdotal data does not give comprehensive picture.

Composite Draft Siting Costs

Siting Cost (\$ per kW) by Track, Technology and Unit Size

Size (MW)	< 1 MW	1-5 MW	5-30 MW	30-60 MW
Technology				
Track 1: Site Analysis	and Engineeri	ng – Typicall	y \$5,000 to \$	2,000,000
Reciprocating Engine	40-130	80-100	195-270	
Microturbine	50-150			
Combustion Turbine		50-70	55-90	35-60
Fuel Cell	25-65			
Track 2: Pe	ermitting – Typ	ically \$5,000	to \$60,000	
Reciprocating Engine	60-95	6-11	2-4	
Microturbine	80-125			
Combustion Turbine		6-11	2-4	1-2
Fuel Cell	25-40			
Track 3: Interd	onnection – T	ypically \$8,0	00 to \$300,00	00
Reciprocating Engine	100-125	6-17	3-9	
Microturbine	130-170			
Combustion Turbine	1	6-17	3-9	3-7
Fuel Cell	40-50			

Most expensive track

Source: Composite of all data sources.

Expensive for smaller units

Task 3. Analyze Siting Procedures & Make Recommendations

- Examine ways to mitigate siting and permitting costs.
- Carefully examine what has and is happening in the leading states
 - Those that have adopted DG interconnection and siting rules, or have large siting levels
 - Includes NY, TX, CA
 - May include IL, NJ, OH, MA, WI, MI
- Consider requesting EIA 412 unregulated entity Schedule 9 data.
- Prepare draft report.
- Conduct external reviews of draft report, especially by DG developers.

FY04-05 Timeline

FY03 Deliverables and Availability

Deliverable	<u>Status</u>
Task 1 Status Report	Completed
Task 1 Draft Report	Completed
Task 2 Status Report	Completed
Task 2 Draft Report	Completed
Task 3 Status Report	Planned for June 04
Task 3 Draft Report	Planned for July 04
Draft/Final Report/PPT	Planned for Sept 04

 All deliverables will be available in PDF format for both hard copy and electronic delivery

Coordination with Stakeholder Groups and Other Project Teams

- Stakeholders Key Part of Project Inputs
- Other Stakeholder Interactions being Considered

